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Abstract

Structure of the magnetotail is investigated in a laboratory simulated magnetosphere.

Particular emphasis is placed on the region of distant magnetotail where the closed field

line region of the plasma sheet terminates and the process of reconnection takes place.

Our study builds upon the previous investigation of the magnetotail (Birn et al. 1992)

where the main results were based on the magnetic field measurements in the tail region

of the simulated magnctosphere. In this paper, more elaborate measurements of plasma

flow and electric field are presented. Besides these measurements, this region of distant

magnetotail is also explored by high resolution imaging with a gated optical imager (GOI)

and the digital image analysis. These images clearly reveal a Y-type magnetic neutral

line for the northward "interplanetary" field (IMF) and a usual X-type for the southward

IMF that confirms our previous results deduced from the magnetic field measurements.

In the neighborhood of these neutral points a strong component of dawn to dusk electric

field (Ey) and a counterstreaming plasma flow is also observed. Plasma flow is measured

by using a double sided Faraday cup which is also used to measure the y-component of

tail current (J_) at different locations. These measurements reveal that the tail current

is not carried by ions as previously thought, rather it is carried by electrons alone.
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1. Introduction

There has been a great deal of interest in the space physics community to understand

the structure of earth's magnetotail under varying conditions of the solar wind plasma

and its associated IMF. Both in situ observations and computer modelling has been used

in the past to understand its structure and its variations imposed by external changes.

The region of distant neutral line where the region of closed plasma sheet terminates

and probable reconnection of magnetic field lines occurs is one of the most interesting

and poorly understood region as far as the in situ observations are concerned. Until

recently, it was explored only by one satellite ISEE 3 that was basically launched to

monitor the solar wind parameters. In order to obtain the global features of this region

with respect to the varying conditions of the solar wind plasma, a coordinated multi-

satellite system is required. Therefore, we approach this problem by modelling the entire

system of magnetosphere in laboratory by interacting a magnetized plasma flow with a

dipole magnetic field. Our previous paper (Birn et al., 1992) presented the magnetic

field measurements and numerical modelling of the tail region with particular emphasis

on the distant neutral line. The main results of that study was the identification of a

Y-type magnetic neutral line for the northward IMF and an X-type neutral line for the

southward IMF. Those results strongly support the occurance of high-latitude night side

reconnection, as suggested by Dungey[1963] for northward IMF and more recently by

Gosling et al. [1991].

In the present paper we are again concentrating in the same region and present further

measurements of electric field and plasma flow for different polarities of the IMF. Also

the global images of the simulated magnetosphere together with the detail digitization of

the distant tail region are presented. In section 2 we will present these images and the

global modelling of the magnetosphere. The plasma flow and electric field measurements

will be presented in section 3. Section 5 will provide the conclusion of this paper.

2. Simulation Procedure and Imaging

The details of the experimental set up is presented in some of our previous papers

(Rahman, el.al,1991; 1989; Bivn et al, I992). The simulation is performed by interacting

an intense magnetized plasma beam produced by a large plasma gun with a strong dipole



field to form a magnetospherethat scalesto the Earth's magnetosphere.The plasmaand

other parametersarepresentedin Table 1. The dimensionlessparametersclearly showa

better agreementswith the MHD scalingrequirements(Rahman et. al, I991) except that

the ratio of ion-Larmour radius with the size of the magnetosphere (riL/Xo) satisfies only

marginally.

In the past, images were taken by using an open shutter camera. Light emitted

from the hot plasma or from the background low density neutral gas molecules provides a

source for these images. Variation in the light intensity develops due to the diverse plasma

condition that exist in the magnetosphere. For example the bow shock, magnetopause

boundary, neutral sheet, reconnection regions, plasma entry regions in the polar cusp and

auroral formation regions at the poles are relatively brighter than the usual background.

Since the density of the simulated solar wind plasma is ,,_ 1013 cm -3, the strong light

emitted by the brightest regions overexpose the film and a high resolution image cannot

be obtained by simple open shutter technique. Therefore, the images taken by an open

shutter camera show only limited features like magnetopause boundary, near earth neutral

sheet and the auroral regions. The structures like bow shock, reconnection regions and

the distant magnetotall could not be identified from those images.

The gated optical imager (GOI) provides a unique capability to obtain high resolution

and also the dynamic behavior of the magnetosphere. Figure 1 shows the schematic dia-

gram of GOI which is used to obtain these images. Light emitted from the magnetosphere

is focused on a biased cathode that emits electrons. These electrons are accelerated, by

applying a square pulse of few micro-second duration, which is much shorter than the

entire plasma pulse of 100 #sec, and then passed through a microchannel plate where the

electron flux is amplified because of the secondary emission by almost a million times.

This secondary electron flux is energized by applying a high voltage of 6-7 kV which can

reconstruct the magnetospheric image on a phosphorus screen that is finally photographed

on an ordinary film. Using this technique we were able to image for the first time, the

detailed structures of the bow shock and the distant magnetotail. These images can be

further enhanced by using a CCD camera and computer aided digitizing techniques. In

this way not only the qualitative informations but also some quantitative information can

be extracted from this imaging technique.



Fig. 2 representsa sample imageof a laboratory magnetospherefor the southward

polarity of IMF with an appliedstrengthof 200G. The magneticfield that penetratesinto

the plasmais always lessthan 100 G with an insignificant reduction in the plasmaflow

speed( Wessel et al. 1990). Therefore the Alfvgn Mach number is almost 2 for all these

images. The exposure time of this image is 5_sec. A series of images taken during the

entire interaction period have shown that this type of global structure persists 80% of the

interaction time. Plasma entry from the polar cusp, formation of bow shock, elongated

magnetotail and auroral formation can be clearly identified in this image. An extended X-

type neutral line can be clearly seen in the current sheet of the magnetotail that persists

up 40#secs. The lower panel of Fig. 2 is digitized version of the distant neutral line

region that shows more clearly the formation of the X-type reconnection in the tail region

that corresponds exactly the same position where the neutral line was predicted from the

magnetic field measurements. This image reveals the presence of a hot trapped plasma

between the earth and the neutral line region and a hot flaring plasma away from the

neutral line. Figures 4 presents the image for the northward IMF with 200 G applied

magnetic field. In this image, a clear separation of bow shock and magnetospause is not

very obvious, however, this image clearly reveals an open magnetosphere. An extended

neutral sheet in the tail region is also very obvious that have a strong resemblance with

the predicted Y-type magnetic neutral line. The region is further clarified in the digitized

version presented in the lower panel which seems to be again consistent with our previous

measurements of the magnetic field (Birn et al., 1992). The complete dynamic evolution

of the laboratory magnet is presented in a separate paper (Yur et al., I993).

3. Plasma Flow and Electric Field Measurements

To measure the plasma flow and identify different boundaries of the simulated

magnetosphere, a new type of double sided Faraday cup is developed. The schematic of

this Faraday cup is shown in Fig. 4 which has a dimensions of 1 cm 3. This combination

of two Faraday cups can measure simultaneously the counter streaming fluxes of either

ions or electrons. For this paper we used this probe to measure the ion flux (en,vi) at

various regions of the tail. Fig. 5 presents the ion flux Ji versus z at z = 9.75cm behind

the model earth for the southward IMF of 200 and 300 G. This location is in the closed

field region and in the vicinity of the termination point. Significantly enhanced plasma



fluxes, both earthward and tailward, near the equatorial plane are quite obvious from

thesemeasurements.The tailward ion flux is almost twice as large asthe earthward ion

flux. The flux profile has a symmetrical behavior in both upper and lower lobes. Fig. 6

is the samedata at z - 6.75cm, much closer to the model earth, but only in the upper

lobe. In this case the flux in both direction has almost the same magnitude. This data

implies the presence of a trapped hot plasma with temperature of 50-100 eV in the near

earth tail region. Fig. 7 and 8 are the similar flux profiles for the northward IMF again at

6.75 cm and 9.75 cm respectively. Again the pattern is similar to the southward IMF case

except that now the net flux is somewhat smaller in magnitude. This implies that the

net plasma density in the case of northward IMF is lower than the southward IMF case

which may be due to the reduced level of entry from solar wind to the magnetosphere for

the northward IMF. The trapped plasma seems to have entered from the neutral point

in the distant tail region that can also be seen from the images presented in Fig. 2 and

3. We have also used this diagnostic to measure the fluxes along the y-axis that show

almost the same level of flux in both directions, which may be an indication that the tail

current is mainly carried by electrons. Using a double Langmuir probe we have also seen

a significant enhancement in plasma density and temperature in the regions of enhanced

ion fluxes. These measurements represent the first identification of plasma sheet and lobe

region s through plasma data in the simulated magnetotail.

The presence of the energized plasma in the photographic pictures possibly indicates

the effects of a localized electric field, which favors a dynamic picture. For this purpose

we performed some measurements of E U as function of z along the tail axis. For this

purpose a floating E-probe is used, the circuit diagram of which is given in Fig. 9. For

southward IMF of 200 and 300 gauss, the E_ as a function of z is presented in Fig. 10.

This figure shows that Ey is concentrated in the vicinity of the neutral point, having a

double peak structure. Fig. 11 shows Ey as a function of z for northward IMF. In this

case only a single flat peak appears with Ey gradually approaching zero as we move the

probe away from the model earth. The most interesting feature is that this E-field does

not correspond to the v × B.

4. Conclusions



In conclusion we have studied the structure and dynamics of the magnetotail in a

laboratory magnetosphere. The images taken by the GOP show that a quasi-stationary

magnetosphere develops in less than 2 /_secs and persists for almost 50 #secs without

any substantial variation in the global structures that is comparable to the tota! duration

of the plasma flow which is 70-100 _usecs. Global features like bow shock, magnetopause

boundary, plasma sheet in magnototail, reconnection region, auroral regions, plasma entry

regions etc. are first time clearly identified. For the southward IMF a usual X-type neutral

line region in the distant magnetotail can be easily identified from these images. On the

other hand, for the northward IMF a long plasma sheet originating from the model earth

is observed which is an indication of a Y-type magnetic neutral line. These results are

consistent with our previous magnetic field measurements in the tail region of the model

magnetosphere (Birn et a1.1992). Detailed measurements of plasma flux, electric and

magnetic field, and other plasma parameters support these observations.
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Fig. 1 Schematic of the gated optical imager (GOI)
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Fig.2b Digitized image of the photograph taken by GOI for 200 G of southward IMF. The

duration of the exposure is 5 _sec. It shows the x-type reconnection of the tail region.
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Fig.3a Photograph taken by GOI for 200 G of northward IMF.

exposure is 2/_sec.
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Fig.3b
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Digitized image of the photograph taken by GOI for 200 G of northward IMF. The

duration of the exposure is 2 _sec. It shows the y-type reconnection of the tail region.
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Fig. 4. Schematic of a double faraday cup used to measure both forward and
backward flow simultaneously.
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Fig. 10 Y-component of the electric field is plotted along the x-axis for the
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